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Abstract
Several schemes for introducing an arti�cial dissipation into a central di�erence approx-

imation to the Euler and Navier Stokes equations are considered. The focus of the paper is
on the convective upwind and split pressure (CUSP) scheme, which is designed to support
single interior point discrete shock waves. This scheme is analyzed and compared in detail
with scalar dissipation and matrix dissipation (MATD) schemes. Resolution capability is
determined by solving subsonic, transonic, and hypersonic 
ow problems. A �nite-volume
discretization and a multistage time-stepping scheme with multigrid are used to compute
solutions to the 
ow equations. Numerical solutions are also compared with either theoret-
ical solutions or experimental data. For transonic airfoil 
ows the best accuracy on coarse
meshes for aerodynamic coe�cients is obtained with a simple MATD scheme. The coarse-
grid accuracy for the original CUSP scheme is improved by modifying the limiter function
used with the scheme, giving comparable accuracy to that obtained with the MATD scheme.
The modi�cations reduce the background dissipation and provide control over the regions
where the scheme can become �rst order.
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1 Introduction

Accuracy must be a primary consideration in the construction of any numerical scheme. In
principle one would like to devise a discrete scheme with the minimum amount of arti�cial
dissipation required for stability, as well as convergence in the case of a stationary solution.
This usually means imposing the additional constraint that the order of the numerical dis-
sipation is at least one order of magnitude smaller than the desired order of approximation.
For general 
uid dynamic computations the numerical scheme should be designed to have
high accuracy in smooth regions of the 
ow �eld and high resolution at shock waves and con-
tact discontinuities. According to Harten [3] such discrete formulations, where the accuracy
away from discontinuities is at least second order, are called high resolution schemes. The
design of these schemes for systems of conservation laws is generally based on theory devel-
oped for a scalar conservation law. As a consequence one cannot ensure that the properties
of the scheme for the scalar equation are valid for the system. In addition, schemes that
permit high de�nition of shock waves without oscillations are �rst order in the neighborhood
of shocks. Concern naturally arises regarding contamination of the solution, especially in
the case of viscous 
ows. For these reasons the properties and resolution capability of this
class of schemes must be determined through numerical applications for a wide range of 
ow
conditions.

High resolution schemes of particular interest for solving the compressible Euler and
Navier-Stokes equations are those that allow shock capturing with a single interior point.
In [6] Jameson presents two schemes with this property that are derived from two di�erent
forms of 
ux splitting. One scheme is designated a characteristic split formulation, and
it employs the 
ux di�erence splitting and linearization technique of Roe [19]. With this
scheme the di�usive 
ux depends on a 
ux Jacobian matrix. The other scheme is called the
convective upwind and split pressure (CUSP) scheme. For this scheme the arti�cial di�usive

ux vector associated with a given coordinate direction is expressed in terms of changes in
the state and 
ux vectors. A somewhat limited number of inviscid and viscous computations
have been performed to evaluate these schemes (see [6]-[7] and [27]-[28]).

We shall investigate and analyze the CUSP scheme, with emphasis on the HCUSP version
which allows a solution with constant total enthalpy for steady 
ow. We discuss the shock-
capturing behavior for various choices of the dissipation coe�cients. We introduce a simple
modi�cation of the limiter function, which is generally used with the scheme, to control
background dissipation, and thus global accuracy. Global accuracy is also improved by
introducing parameters into the limiter function to augment control over the regions where
the CUSP scheme can become �rst order. The CUSP scheme includes a contribution that is
scaled according to the local velocity. If the velocity vanishes, as it does for viscous 
ows, and
there is a high aspect ratio mesh, the dissipation in the streamwise direction (i.e., direction of
long side of mesh cell) may not be adequate for convergence. A change in the velocity scaling
factor based on aspect ratio is presented. The resolution capability of the HCUSP scheme
is evaluated for subsonic, transonic, and hypersonic 
ow problems. A detailed comparison
of the scheme with scalar and matrix dissipation schemes is performed. The scalar scheme
is based on the dissipation model of Jameson, Schmidt, and Turkel [4].
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2 Dissipation

A �nite-volume approach is applied to discretize the 
uid dynamic equations of motion. The
computational domain is divided into quadrilateral cells, �xed in time, and for each cell the
governing equations can be nondimensionalized and written in integral form as follows:

@

@t

ZZ


wdxdy +

Z
@

(fdy � gdx) =

p

M

Re

Z
@

(fvdy � gvdx); (2.1)

where 
 is a generic cell (or cell area) with @
 its boundary. In the scaling factor for the
viscous terms on the right hand side of (2.1), the quantities 
, M , and Re are the speci�c
heat ratio, Mach number, and Reynolds number, respectively, with M and Re de�ned in
terms of nominal conditions. Taking wj;k as the cell-averaged solution vector, equation (2.1)
can be written in semi-discrete form as

d

dt
(
j;kwj;k) + Lwj;k = 0; (2.2)

where 
j;k is the area of the cell, and L is a spatial discretization operator de�ned by

L = LC + LD + LAD; (2.3)

with the subscripts C,D, and AD referring to convection, di�usion, and arti�cial dissipation.
In order to simplify the description of the dissipation model, we consider the one-dimensional
Euler equations of gas dynamics.

2.1 Scalar Dissipation Model

The scalar dissipation is based on the model introduced by Jameson, Schmidt, and Turkel
[4]. This model de�nes a switching function based on a blending of the second and fourth
di�erences. The term associated with the operator LAD is expressed as

LAD wj = �(D2 �D4)wj = dj+1=2 � dj�1=2: (2.4)

Then

D2wj = r
h
(�j+1=2 "

(2)
j+1=2)�

i
wj; (2.5)

D4wj = r
h
(�j+1=2 "

(4)
j+1=2)�r�

i
wj; (2.6)

where the index j refers to a cell center, and the operators � andr are forward and backward
di�erence operators. The variable scaling factor � is de�ned as

�j+1=2 =
1

2
[�j + �j+1] ; (2.7)

where � is the largest eigenvalue in absolute value (i.e., spectral radius) of the 
ux Jacobian
matrix associated with the Euler equations. For example, in the � and � directions of
generalized coordinates (�; �),

�� = juy� � vx�j+ c
q
x2� + y2�;
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�� = jux� � uy�j+ c
q
x2� + y2� :

The coe�cients "(2) and "(4) use the pressure as a sensor for sharp gradients, and they are
de�ned as

"
(2)
j+1=2 = �(2)max(�j�1; �j; �j+1; �j+2); (2.8a)

�j =

�����pj�1 � 2pj + pj+1
pj�1 + 2pj + pj+1

����� ; (2.8b)

"
(4)
j+1=2 = max

h
0; (�(4) � "

(2)
j+1=2)

i
; (2.8c)

where typical values for the constants �(2) and �(4) are in the ranges 1
4
to 1

2
and 1

64
to 1

32
,

respectively. We shall refer to (2.4) together with (2.8) as the JST scheme and (2.8) alone as
the JST switch. The switching function � can be interpreted as a limiter, in the sense that it
activates the second-di�erence contribution at extrema and switches o� the fourth-di�erence
term. Moreover, at shock waves the dissipation is �rst order, and a �rst-order upwind scheme
is produced for a scalar equation. In smooth regions of the 
ow �eld the dissipation is third
order.

Thus, we have two di�erent dissipation mechanisms at work. The switch determines
which one is active in any given region. For smooth 
ows, � is small and the dissipation
terms consists of a linear fourth di�erence that damps the high frequencies which the central
di�erence scheme does not damp. This is useful for achieving a steady state and is not
always necessary for time dependent problems [9]. In the neighborhood of large gradients
in the pressure, � becomes large and switches on the second-di�erence viscosity while si-
multaneously reducing the fourth-di�erence dissipation. This is mainly needed to introduce
an entropy condition to reduce overshoots near discontinuities and choose the correct shock
relationships. For subsonic steady state 
ow this can be turned o� by choosing �(2) = 0.

One possible extension of the scaling factor of (2.7) to multidimensions is isotropic. In
two dimensions, with (�; �) denoting arbitrary curvilinear coordinates, the scaling factor
takes the form

�j+1=2;k =
1

2
[(��)j;k + (��)j+1;k + (��)j;k + (��)j+1;k]: (2.9)

Such a scaling is generally satisfactory for inviscid 
ow problems when typical inviscid 
ow
meshes (i.e., cell aspect ratio O(1)) are used. This factor can cause excessive numerical
dissipation in cases of meshes with high-aspect-ratio cells. Instead, the scaling factor is
usually de�ned as

�j+1=2;k =
1

2
[(���)j;k + (���)j+1;k]; (2.10)

where

(���)j;k = �j;k(r) (��)j;k; (2.11)

�j;k(r) = 2��1(1 + r�j;k);
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r is the ratio ��=��, and the exponent � is de�ned by 0 � � � 1. If � = 1, the isotropic
form of (2.9) is recovered. If � = 0, the scaling in a given direction simply depends on
the eigenvalue associated with that direction. This scaling is sometimes called individual
eigenvalue scaling (see [14], [21]). The exponent � is generally taken to be between 1

2
and 2

3
.

Thus, this dissipation scaling factor is between the isotropic and individual eigenvalue scaling
factors. As demonstrated in [13] and [21], this factor produces a signi�cant improvement in
accuracy relative to the isotropic factor for high-aspect-ratio meshes, and it permits good
convergence rates with a multigrid method.

Using the TVD concept, an alternative for the switch of (2.8) that is TVD for a scalar
equation is introduced in [22]. In one dimension this switch is given by

�j =
jpj+1 � 2pj + pj�1j

jpj+1 � pj j+ jpj � pj�1j+ �
: (2.12)

and choose �(2) = 1
2 . In practice we usually use a weaker form than (2.12), for example,

�j =
jpj+1 � 2pj + pj�1j
(1� !)PTVD + !P ; (2.13)

where

PTVD = jpj+1 � pjj+ jpj � pj�1j;
P = pj+1 + 2pj + pj�1;

and 0 � ! � 1. The TVD switch of (2.12) is recovered when ! � 1. Typically ! � 1=2.
In [23] this switch allowed the computation of 
ows with strong shock waves whereas the
switch of (2.8) did not.

2.2 Matrix-Valued Dissipation Model (MATD)

Sharp resolution of shock waves without oscillations can be achieved by closely imitating an
upwind scheme in the neighborhood of a shock wave. A key feature of upwind schemes is a
matrix evaluation of the numerical dissipation. With this evaluation the dissipative terms of
each discrete equation are scaled by the appropriate eigenvalues of the 
ux Jacobian matrix
rather than by the spectral radius, as in the JST scheme. A matrix dissipation model can
easily be constructed by starting with the JST formulation.

One can show [22] that the necessary modi�cation of the JST scheme to produce a
matrix dissipation model is the substitution of jAj for the eigenvalue scaling factor � in
(2.5) and (2.6). Since the Euler equations are a strongly hyperbolic system, the coe�cient
matrix can be diagonalized. Assume QAQ�1 = � (diagonal matrix). Then jAj is de�ned as
jAj = Q�1j�jQ and j�j = diag(j�1j; j�2j; j�3j), where �i are the forward acoustic, backward
acoustic, and convective eigenvalues. An e�cient way of computing jAj times a vector is
presented in [22].

In practice one cannot choose �1; �2; �3 as the eigenvalues. Near stagnation points �3
approaches zero while near sonic lines �1 or �2 approaches zero. A zero arti�cial viscosity
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would create numerical di�culties. Hence, we limit these values as

j~�1j = �max(j�1j; Vn�(A)); j~�2j = �max(j�2j; Vn�(A)); (2.14)

j~�3j = �max(j�3j; V`�(A)); (2.15)

where � is de�ned by (2.11), �(A) is the spectral radius of A, and the linear eigenvalue �3
can be limited di�erently than the nonlinear eigenvalues. The parameters Vn and V` have
been determined numerically. Typical values are Vn = 0:25 and V` = 0:025.

2.3 CUSP Scheme

In the previous sections we have described the use of an arti�cial viscosity based on either
a scalar or matrix coe�cient. Inspired by earlier work on 
ux-vector splitting [34] Liou
and coworkers designed a scheme called Advection Upstream Splitting Method (AUSM)
[10, 11, 35]. This method was later re�ned for large-scale 3-D viscous computations in [17].
AUSM is based on a splitting of the 
ux function into convective and pressure contributions.
In some sense, the pressure terms contribute to the acoustic waves while the velocity terms
contribute to convective waves. Hence, it is reasonable that these 
ux terms be treated
di�erently. Liou thus considers decompositions of the 
ux vector that are not based on a
characteristic decomposition but on Mach number scaled contributions of the left and the
right states to the interface 
ux. This decomposition has the disadvantage that it is more
di�cult to develop for other sets of equations compared with a characteristic decomposition.
A similar type scheme called the Convective Upwind Split Pressure (CUSP) scheme was later
introduced by Jameson [5] and subsequently modi�ed by Tatsumi, Martinelli, and Jameson
[7, 8, 27, 28]. The CUSP scheme has some advantages over AUSM. First, one can consider
the scheme as another type of arti�cial viscosity, since it is de�ned as a sum of the central 
ux
average plus a dissipative 
ux. Hence, it can be readily used with a variety of time-stepping
schemes (e.g., multistage, LU, implicit, etc.). Second, the CUSP formulation can be used
in a straightforward manner with multistage schemes which do not evaluate the arti�cial
dissipation 
uxes at every stage, in order to reduce computational work. Hence, we shall
only describe the CUSP version of this type of scheme.

2.3.1 De�nition of CUSP Scheme

Previously, we introduced the scalar and matrix-valued viscosities by considering dj+1=2 of
the form

dj+1=2 =
1

2
Qj+1=2(wj+1 � wj): (2.16)

The factor 1
2 is introduced so that we get full upwinding when Qj+1=2 = I. We note that for

the scheme to be positive, Q must be su�ciently large. For the matrix viscosity we chose
Q = jAj (modi�ed near zero eigenvalues) while for the scalar viscosity we chose Q = �(A)I.

For the CUSP scheme we instead choose d as a linear combination of w and f . In one
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dimension we consider two choices for the state vector:

w = (� �u �E)T

f = u

0
B@ �

�u
�E

1
CA+

0
B@ 0

p
up

1
CA = uw + fp

and

wh = (� �u �H)T

f = u

0
B@

�
�u
�H

1
CA +

0
B@

0
p
0

1
CA = uwh + fp:

The �rst-order accurate CUSP scheme is de�ned as

dj+1=2 =
1

2
�c(wj+1 � wj) +

�

2
(fj+1 � fj) (2.17)

The factor c is included so that � is dimensionless. We thus consider only scalar parameters
instead of a matrix coe�cient, but we have two free parameters, � and �. The scheme is total
enthalpy preserving if wh = (� �u �H)T is chosen as the basis. This choice is denotedHCUSP
by Jameson [7]. By using the arithmetic average, u = 1

2
(uj+1 + uj), and the de�nition

�c = �c+ �u:

One can rearrange (2.17) to obtain

dj+1=2 =
1

2
�c(wj+1 � wj) +

�

2
(fpj+1 � fpj) +

�

2
w(uj+1 � uj):

Introducing the Roe matrix ARL, we have fR � fL = ARL(wR � wL). This relation is exact
if ARL is computed from weighted averages of the left and the right states. That is,

u =

p
�RuR +

p
�LuLp

�R +
p
�L

H =

p
�RHR +

p
�LHLp

�R +
p
�L

(2.18)

� =
p
�R�L

Then the �rst-order dissipation is

dj+1=2 =
1

2
(�ARL + �cI)(wR � wL): (2.19)

We see from this formula that d is a linear function of A. Recall that jAj is a quadratic
function of A, by the Cayley-Hamilton Theorem. Hence, it is not possible to bound d by
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wL

w
R

Figure 1: Conditions at shock wave.

jAj. Since jAj is the minimum dissipation needed for a scheme to be positive [26], the CUSP
scheme cannot be positive.

Remark. The parameters � and � will be de�ned later in this section. For these pa-
rameters the CUSP scheme is not positive at least for M < 1=2. The concepts of TVD and
positivity were introduced primarily for the treatment of discontinuities. Thus, it is not clear
theoretically if the loss of positivity for subsonic 
ow bounded away from the sonic line is
important. For supersonic 
ow (M � 1) the CUSP scheme is positive.

Assume that the subscript L denotes the interior point inside the shock zone, R is the
state downstream of the shock, and the state LR is subsonic (as depicted in Figure 1).
Jameson [7] shows that the downstream point with the state R is in equilibrium if

fR � fL +
�c

1 + �
(wR � wL) = 0: (2.20)

Substituting the Roe matrix for the di�erence in f into (2.20) we get

 
ARL +

�c

1 + �
I

!
(wR � wL) = 0:

Hence, wR�wL is an eigenvector of ARL, and �(�c)=(1+�) is the corresponding eigenvalue.
However, the eigenvalues of ARL are known to be �+, �� and u. If � is an eigenvalue of A,
then using this formula for �c in (2.19) we have

dj+1=2 =
1

2
[��I + �(ARL� �I)] (wR �wL):

In order to have a positive di�usion when u > 0, we require that � be negative (i.e.,
�(�c)=(1 + �) = ��). Thus,

�c = �(1 + �)��: (2.21)
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For u < 0 we obtain similarly

�c = (1� �)�+: (2.22)

So, we have reduced our two free parameters to one free parameter by demanding a one
point shock pro�le. More generally, Jameson shows that one obtains a shock pro�le with
one interior point if the following two conditions hold:

1. When the 
ow is supersonic through the shock then one obtains a totally upwind 
ux.

2. The arti�cial dissipation Q satis�es a generalized eigenvalue problem

(ARL � �RAQRA) (wR � wA) = 0

at the exit from the shock.

The second condition is satis�ed by both the matrix viscosity and the CUSP scheme; however,
the scalar viscosity does not satisfy the �rst condition. We again note that the positive
condition Q � jAj is satis�ed by the scalar and matrix viscosities but not by the CUSP
viscosity for all Mach numbers.

What remains to be done is to choose suitable functions for � and �c which satisfy the
above requirements. Jameson's choice for �, which is based upon the eigenvalues correspond-
ing to the acoustic waves, is given by

� =

8>><
>>:

+max
�
0; u+�

�

u���

�
if 0 �M < 1

�max
�
0; u+�

+

u��+

�
if �1 < M < 0

sgn(M) if jM j � 1:

(2.23)

The cuto�s, � � 0 for u > 0 and � � 0 for u < 0, ensure that the pressure terms are
discretized centrally for small Mach numbers. Shock capturing with one interior point is
obtained by taking

�c =

8>>><
>>>:

juj if � = 0
�(1 + �)�� if � > 0 and 0 < M < 1
(1 � �)�+ if � < 0 and � 1 < M < 0

0 if jM j � 1:

The dissipation coe�cients are to be computed from Roe-averaged quantities as in (2.18).
They provide full upwinding for supersonic 
ow, � = sgn(M), � = 0. The choice of �c = juj
for � = 0 yields a continuous dissipation coe�cient in the subsonic region, and it does
not smear slip lines with juj close to zero. This makes the CUSP formulation attractive for
viscous 
ow calculations with boundary layers. However, viscous 
ows are usually discretized
by using cells with large aspect ratio. It is well known that this situation requires larger
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dissipation scaling in the direction of the long cell sides than given by juj. We rede�ne the
dissipation coe�cients in the individual coordinate directions. For the �-direction we have

�c� = r+

8>>>>>>>><
>>>>>>>>:

max(juj; �cr�) if � = 0
�(1 + �)�� if � > 0 and

0 < M < 1
(1 � �)�+ if � < 0 and

�1 < M < 0
0 if jM j � 1:

(2.24)

where r+ and r� are functions of the spectral radii in the � and � directions (�� and ��),
and they are de�ned as follows:

r = (
��
��
)�; r+ = max(r; 1); r� = min(r; 1):

The dissipation coe�cient in the �-direction is de�ned correspondingly.

2.3.2 Simpli�ed Scheme

Several modi�cations of the CUSP scheme have been in use so far. Based upon the wh =
(� �u �H)T system the dissipation coe�cients presented in [7] and [28] are as follows:

� =

( jM j if jM j � �
1
2

�
�+ M2

�

�
if jM j < �;

(2.25)

� =

8>><
>>:

+max
�
0; u+�

�

u���

�
if 0 �M < 1

�max
�
0; u+�

+

u��+

�
if �1 < M < 0

sgn(M) if jM j � 1:

This choice does not allow exact shock capturing because (2.21) and (2.22) are not satis�ed.
Furthermore, Roe averaging has been replaced by arithmetic averaging in [7] and ��; �+ by
u � c; u + c, respectively. This simpli�cation saves a few square roots in the coding of the
dissipative 
ux. Equation (2.25) is then

� =

( jM j if jM j � �
1
2

�
�+ M2

�

�
if jM j < �;

(2.26)

� =

8><
>:

max(0; 2M � 1) if 0 �M < 1
min(0; 2M + 1) if �1 < M < 0

sgn(M) if jM j � 1:
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3 Higher Order Scheme

Having determined �c and �, we see from (2.17) that the scheme is completely de�ned in
terms of w and fp. Formula (2.17), as given, is only �rst-order accurate, as it depends
only on dj+1=2 = wj+1 � wj, and so the complete arti�cial viscosity behaves like a second
di�erence. The purpose of this section is to combine a �rst-order accurate CUSP scheme
with a high-order dissipation.

Previously, we considered a combination of a low-order and high-order arti�cial viscosity
based on the scalar (JST) switch of (2.8). This switch has the disadvantage that one quan-
tity, the pressure, controls the shock sensor. Moreover, it forces all variables to be treated
equal, even though some experience sharp changes through the discontinuity while others
are continuous across the shock. The requirement to choose a particular 
ow variable for
a switch can be eliminated. One can instead limit independently each dependent variable
in each coordinate direction. Such a limiting allows the construction of a strictly upwind
scheme for the one-dimensional Euler equations rather than just for a scalar equation.

In [5] Jameson constructed a family of limiter functions based on the function

R(u; v) = 1�
����� u� v

juj+ jvj+ �

�����
q

; (3.1)

where q is a positive number and � has the dimensions of u. The parameter � << 1, and in this
work it is taken to be 10�10. Note that R(u; v) � 0 whenever u and v have the opposite sign.
Let w be an element of the solution vector for the governing 
ow equations. Also, note that
according to our previous theory [22] R(�wj+3=2;�wj�1=2), where �wj+3=2 = wj+2 � wj+1,
would be replaced by �j+1=2, where �j+1=2 is the maximum of �j over the nearest neighbors
and � is given by (2.12).

In the results section of this paper we will demonstrate that it can be bene�cial to further
control the regions where the limiter is applied. Hence, we generalize (3.1) to

R(u; v) = 1�min(ev; ep; 1)

����� u� v

juj+ jvj+ �

�����
q

; (3.2)

with

ev =

(
0 if M �Mlimit

5M�1
limit(M �Mlimit) if M > Mlimit;

ep =

(
0 if � � �limit

2��1limit(� � �limit) if � > �limit:

The control parameters are the contravariant Mach number M and the pressure switch �,
as given in (2.13). Thus, the limiter cannot produce a �rst-order scheme in regions where
M � Mlimit or � � �limit. With the introduction of min(ev; ep; 1) in (3.2) the scheme is not
very sensitive to the value of the exponent q (typically, q = 1 or q = 2).
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De�ne the limiter function L(u; v) by

L(u; v) = R(u; v)
u+ v

2
: (3.3)

At the mesh cell interface j + 1=2, we de�ne the left and right states for each dependent
variable as

wL = wj +
1

2
L(�wj+3=2;�wj�1=2);

wR = wj+1 � 1

2
L(�wj+3=2;�wj�1=2);

(3.4)

and so

wR � wL = �wj+1=2 � L(�wj+3=2;�wj�1=2): (3.5)

For the arti�cial viscosity all di�erences will be based on wR � wL. In the neighborhood of
shock waves R(u; v) and hence L(u; v) are close to zero. Moreover, wR � wL = �wj+1=2,
resulting in a �rst-order scheme for the arti�cial viscosity. For smooth 
ow R(u; v) = 1, and
L(u; v) = (u+ v)=2. Hence, in a smooth region

wR � wL =�wj+1=2 � L(�wj+3=2;�wj�1=2)

' �wj+1=2 � �wj+3=2 +�wj�1=2

2
(3.6)

= �1

2
�3wj+1=2:

Thus, in the smooth regions wR � wL behaves as a third di�erence, while in the vicinity of
shock waves it behaves as a �rst di�erence. Consequently, (3.5) has similar properties to the
JST scheme. One can obtain the relationship between (3.5) and the JST scheme by de�ning
the di�usive 
ux dj+1=2 as

dj+1=2 = �j+1=2(wR � wL) ; �j+1=2 = �(2)�j+1=2; (3.7)

where �(2) is a parameter, and � is the spectral radius of the associated 
ux Jacobian matrix.
One di�erence between the JST scheme and (3.5) involves the parameters �(2) and �(4)

for the second and fourth di�erences, respectively. Both �(2) and �(4) are free parameters
in the JST scheme. As seen from (3.6) and (3.7) these parameters are automatically chosen
as �(2) and 1

2
�(2) with (3.5). Furthermore, for the matrix viscosity (see Section 2.2) and

the CUSP scheme (described in Section 2.3) �(2) = 1
2 , and so we no longer have any free

parameters. The coe�cient of the second di�erence is chosen as 1
2 so that the scheme is fully

upwind for supersonic 
ows. However, the fourth-di�erence viscosity is introduced only to
accelerate the convergence to a steady state by eliminating the decoupling of the odd and
even points. Hence, we wish �(4) to be as small as possible for accuracy while still achieving
a good convergence rate. It does not seem reasonable to connect the two components of the
arti�cial viscosity. In section 4 we will compare the magnitude of the scalar viscosity and
the CUSP scheme.
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One can generalize the limiter function of (3.3) by reintroducing a free parameter that
essentially governs the level of the third-order viscosity in the smooth regions. The resulting
scheme has the disadvantage that a free parameter must be chosen; however, it has the
advantages of greater 
exibility and increased accuracy. We now de�ne a new L as

L(u; v; w) = R(u;w) �
�
(1� 4�(4))v + 4�(4)

u+ w

2

�
; (3.8)

where left and right state values are determined by

wL = wj +
1

2
L(�wj+3=2;�wj+1=2;�wj�1=2);

wR = wj+1 � 1

2
L(�wj+3=2;�wj+1=2;�wj�1=2):

When �(4) = 1
4 , the L of (3.8) reduces to the original L of (3.3). At shock waves R(u;w) � 0,

and we again have wR � wL = �wj+1=2. For smooth regions of the 
ow �eld we have
wR � wL = �2�(4)�3wj+1=2.

One di�culty with (3.1), and indeed with any TVD switch, is that it limits the di�erences
near minima and maxima independent of the amplitude of the function. Hence, in the far
�eld where the solution is almost uniform the low-order scheme is activated by small noise
levels. Since this occurs randomly it frequently prevents the convergence of the residual
beyond three or four orders of magnitude. The use of (3.2) eliminates this di�culty.

The extrapolation technique of (3.8) can be used with (2.17) to get the �rst di�erence to
higher order accuracy. Then, the states corresponding to higher order accuracy are obtained
in a way similar to van Leer'sMUSCL approach [34]. To impose monotonicity one can apply
the limiter discussed in this section. For example, we can replace (2.17) by

dj+1=2 =
�c

2
(wR �wL) +

�

2
[fp(wR)� fp(wL)] ;

where wR; wL are given by (3.4). This procedure was followed throughout the numerical
examples presented in Section 7. Application of (3.4) to the wh = (� �u �H)T variables
still allows total enthalpy to be preserved in the higher order scheme. When a multigrid
algorithm is used to solve the governing 
ow equations, the higher order scheme is applied
only on the �nest mesh, and the lower order scheme is applied on the coarser meshes.
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4 Analysis of CUSP Scheme

The eigenvalues of �ARL + �cI (see 2.19) are �1c, �2c , and �3c. Using the simpli�cations
of (2.26) the eigenvalues are:

�1 = jM j;

�2 =

8><
>:

jM j if jM j < 1
2

�+ � if 1
2
�M � 1

jM + 1j if jM j > 1;

�3 =

8><
>:

jM j if jM j < 1
2

�� � if 1
2
�M � 1

jM � 1j if jM j > 1

We note that for jM j < 1
2 all three eigenvalues of the arti�cial viscosity are equal, and so we

have the equivalent of a scalar viscosity. The scalar viscosity now scales with jM jc rather than
(jM j+1)c as in the JST scalar viscosity. This is more similar to the case of preconditioning
where all the eigenvalues are approximately jM jc for low speed 
ow. Hence, we expect that
the CUSP dissipation should work properly for very low Mach numbers provided the central

ux terms are augmented by a suitable preconditioning matrix.

In the subsonic range where � = 0, all of the versions of the CUSP scheme do not
satisfy (2.21) and (2.22), which are necessary for shock capturing. Thus the cell-face Mach
numbers in the shock structure have to be larger than about 0.5 in order to avoid post-shock
oscillations. The motivation to design �c = juj when � = 0 has already been discussed.
However, the choice of the function for �, as given in (2.23), is not necessarily optimal. For
example, � = max(0; (u+ 1

2
��)=(u � ��)) would allow shock capturing for Mach numbers

down to about 1=3, but the subsonic dissipation would be twice as large, �c = 2juj for � = 0.
Nevertheless, our own experience gained from a number of numerical applications suggests
that there is no need for further modi�cations of �.

It is rather di�cult to compare the e�ect of the parameter �(4) of the JST and the CUSP
schemes, since these schemes also include eigenvalue information which is not the same in the
two schemes. To isolate the e�ect we consider a low Mach number 
ow with preconditioning
(see [31] for details). Now both switches are based on the convective eigenvalue u. A typical
value for the JST scheme is �(4) = 1

32. However, for an aspect ratio of one the Martinelli
scaling [13] adds another factor of two. The parameter � = 0 in the preconditioning adds an
additional factor of approximately 2.6. Hence, the e�ective constant multiplying the fourth
di�erence is about 5

32, which is somewhat smaller than the 1
4 used with the original CUSP

scheme. For transonic 
ows it is more di�cult to compare the levels of dissipation. However,
it seems that the original CUSP scheme yields too high a viscosity level and so the �(4)

introduced in (3.8) should be reduced to less than 1
4
. Numerical computations demonstrate

the improved accuracy (though slower convergence) for standard transonic turbulent 
ows
when �(4) is reduced.
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5 Low Speed Preconditioning

For low Mach numbers standard algorithms converge to a steady state very slowly because of
the disparity between the convective and acoustic eigenvalues. Furthermore, it is also found
that most schemes give very poor results for these low Mach number 
ows, even when a
steady state is achieved ([30]-[32]). One way to overcome these di�culties is to precondition
the equations by multiplying the time derivative terms by a matrixP�1. If P is appropriately
chosen, then one can reduce the disparity of the wave speeds. In this section preconditioning
is applied to the di�erent dissipation schemes. Details of preconditioning techniques are
given in [31, 30].

To simplify the presentation we shall only consider a one-dimensional system. The ex-
tension to multidimensions is straightforward. Consider the system of equations

@w

@t
+
@f

@x
= 0:

We replace this by the preconditioned system

P�1
@w

@t
+
@f

@x
= 0

or in quasi-linear form

P�1
@w

@t
+A

@w

@x
= 0

where A = @f=@w. Introducing an arti�cial viscosity in conservation form, we get

P�1
@w

@t
+
D0f

2�x
=

1

�x
r
h
"(2)P�1F (PA)�w

i
=

dj+1=2 � dj�1=2
�x

(5.1)

@w

@t
+P

D0f

2�x
=

P

�x
r
h
"(2)P�1F (PA)�w

i
= P

dj+1=2 � dj�1=2
�x

where D0 denotes a central di�erence, r is a backward di�erence, and � is a forward
di�erence operator.

We �rst consider the matrix-valued viscosity, and thus F (PA) = jPAj. The arti�cial
viscosity is

dj+1=2 = "
(2)
j+1=2P

�1
j+1=2j(PA)j+1=2j(wj+1 � wj)

Pjdj+1=2 = "
(2)
j+1=2PjP

�1
j+1=2j(PA)j+1=2j(wj+1 � wj):

When PA has only three distinct eigenvalues, then by the Cayley-Hamilton theorem jPAj =
�0I + �1PA+ �2(PA)2, where the coe�cients �i depend on the eigenvalues of PA. So

P�1jPAj = �0P
�1 + �1A+ �2PA

2

We next consider the CUSP arti�cial viscosity. The arti�cial viscosity term is given by
�0�w+�1�f � �0�w+�1A�w with the appropriate coe�cients �i for the CUSP scheme.
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This has the same form as the matrix-valued arti�cial viscosity without the quadratic term,
and so by the identical reasoning we get

dj+1=2 =
1

2
�cP�1j+1=2(wj+1 � wj) +

�

2
(fj+1 � fj) (5.2)

Pjdj+1=2 =
1

2
�cPjP

�1
j+1=2(wj+1 � wj) +

�

2
Pj(fj+1 � fj)

(compare with (2.17)). In theory the parameters � and � should depend on the eigenvalues
of PA rather than A and so are not the same as the nonpreconditioned version of CUSP.
However, in order to not interfere with the shock properties of the CUSP scheme we turn
o� the preconditioning for M > 1=2. Hence, the relationship (2.21) is still valid. The
parameter � would then be chosen by (2.23) where the eigenvalues �+,�� should account
for the preconditioning. In addition, for jM j < 1=2 the CUSP scheme reduces to a scalar
viscosity proportional to the convective velocity which is appropriate for preconditioning.
Hence, it is reasonable to use the same parameters � and � for the preconditioned CUSP
as given by (2.21) based on the original eigenvalues or one of the simpli�cations previously
discussed. The advantages of combining the CUSP scheme with preconditioning are shown
in Section 7. Additional results with the preconditioned CUSP scheme are presented in [33].

6 Summary

The central di�erence scheme requires an arti�cial viscosity in order to both prevent oscil-
lations near shocks and damp high frequencies, enabling the iteration procedure to reach a
steady state. In the Jameson, Schmidt, Turkel (JST) formulation these arti�cial viscosities
are provided by second and fourth di�erences of the variables with a scalar coe�cient in-
cluded. This scalar coe�cient depends on the largest eigenvalue (in each direction) to scale
the size of the viscosity. In addition, the coe�cient depends on the second di�erence of the
pressure to sense shocks. In the neighborhood of shocks the fourth di�erence is turned o�
while the second di�erence prevents overshoots. In smooth regions of the 
ow the second
di�erence (which leads to �rst-order accuracy) is minimal while the fourth di�erence damps
the high-frequency errors.

This technique works quite well for transonic 
ow and was the main approach for many
years. With the increasing popularity of upwind schemes it was seen that this scheme is
less accurate than upwind schemes, especially on coarse meshes (see e.g., [1]). This led
to the introduction of a matrix-valued coe�cient in the arti�cial viscosity (dissipation) that
mimics the e�ects of an upwind scheme, but within the context of a central di�erence scheme
with an arti�cial dissipation coupled with a multistage time advancement. Later Jameson
introduced the CUSP scheme, which is in between the matrix dissipation and the scalar
dissipation schemes. With the CUSP scheme the dissipation is a function of the Mach
number and becomes fully upwind in supersonic regions similar to the matrix dissipation.
However, it avoids the need for a full-matrix coe�cient while still obtaining one point shock
pro�les. The CUSP scheme is more expensive than the matrix-viscosity method, since it
uses extrapolation for each 
ow variable and limiting depending on the variable to achieve
second-order accuracy,
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The idea of using the Mach number to mimic fully upwind methods has been useful in
other applications besides the arti�cial viscosity. One can use the Mach number to adjust the
parameters of the residual smoothing so that it becomes fully upwind in supersonic regions.
Similarly one can construct a multigrid method with weighting factors depending on the
Mach number such that it becomes fully upwind in supersonic regions. We label this

Poor Man's Upwinding

Advantages:

� Cheap

� Fully upwind in supersonic 
ow

Disadvantage:

� Not fully upwind for subsonic 
ow

Applications

� Residual smoothing

� CUSP scheme

� Multigrid

In the opposite direction the Mach number can be used to construct a preconditioning
that is useful in low Mach number regions. Then the Mach number can be used to turn o�
the preconditioning in supersonic regions.

7 Numerical Results

In the numerical applications presented here we assess the accuracy and shock capturing
capabilities of the CUSP scheme. Since the version of the CUSP scheme that we consider is
expressed in terms of the total enthalpy H and is H preserving for inviscid 
ows, it is usually
called the HCUSP scheme. Comparisons are made between the HCUSP andMATD schemes.
The commonly used scalar dissipation scheme is also included in some of the comparisons.
In so doing one can clearly see the superiority of the high-resolution HCUSP and MATD

schemes on even relatively coarse meshes (i.e., 8 cells in the boundary layer of a viscous

ow). The 
ow problems considered in the evaluation of these numerical di�usion schemes
include the following: 1) Inviscid 
ow over airfoils, 2) laminar 
ow over a 
at plate, 3)
turbulent 
ow over an airfoil, 4) inviscid and viscous hypersonic 
ow over a 2-D wedge. The
computational e�ort and convergence behavior in computing these solutions are given. In
all cases a �ve-stage Runge-Kutta scheme in conjunction with the convergence acceleration
techniques of local time stepping, implicit residual smoothing, and multigrid was used.
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Figure 2a: Inviscid pressure distributions computed withMATD scheme (NACA 0012 airfoil,
M = 0:80, � = 1:25�).
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Figure 2b: Inviscid pressure distributions computed with HCUSP scheme (NACA 0012
airfoil, M = 0:80, � = 1:25�).
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Figure 3a: MATD solutions near lower surface shock (NACA 0012 airfoil, M = 0:80, � =
1:25�).
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Figure 3b: HCUSP solutions near lower surface shock (NACA 0012 airfoil, M = 0:80,
� = 1:25�).
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Dissipation Grid CL CD

Scheme

MATD 192 � 32 0.3521 0.02249

384 � 64 0.3550 0.02256

768 � 128 0.3552 0.02256

HCUSP 192 � 32 0.3667 0.02419

384 � 64 0.3610 0.02310

768 � 128 0.3582 0.02278

HCUSP 192 � 32 0.3639 0.02297

(modi�ed) 384 � 64 0.3592 0.02279

768 � 128 0.3563 0.02269

Table I: Lift and drag coe�cients for inviscid 
ow over NACA 0012 airfoil (M1 = 0:80;
� = 1:25�).

The �rst case is similar to the application published in [7]. Results obtained with the
MATD and HCUSP schemes for inviscid transonic 
ow over the NACA 0012 airfoil are
compared in Figures 2 and 3. The free-stream Mach number for this case is 0.8 and the
angle of attack is 1:25�. Solutions were computed on three successively �ner C-topology
meshes. The coarsest mesh contained 192�32 cells, with 160 cells on the airfoil, and for each
sequential mesh the number of cells in each coordinate direction was doubled. The principal
di�erences between the solutions occur at the shock waves. Since the MATD scheme uses
a pressure switch for all the 
ow equations, it cannot capture a shock with a single interior
point. It requires three interior points. Nevertheless, the resolution of the stronger upper
surface shock is nearly the same for both theMATD and HCUSP schemes on the 384�64 and
768�128 meshes. With theMATD formulation there is some smearing on the 192�32 mesh.
As is clearly evident in Figure 3 the HCUSP scheme allows a sharp de�nition of the weak
lower surface shock and the Zierep singularity that immediately follows. The aerodynamic
coe�cients calculated with theMATD, original HCUSP (with limiter of (3.1)), and modi�ed
HCUSP (with limiter of (3.2)) schemes are presented in Table I. The coe�cients computed
with the MATD scheme on the 384 � 64 mesh essentially agree with those for the �nest
grid. The lift coe�cients determined with the original and modi�ed HCUSP schemes on
the corresponding meshes are slightly higher, with the �nest grid values approaching those
obtained with the MATD scheme. Drag coe�cients obtained with the modi�ed HCUSP

scheme are in closer agreement with those obtained with the MATD scheme, especially on
the coarsest grid. Later, in the discussion viscous airfoil 
ow results we will show the behavior
of the two forms of the limiter in the 
ow �eld.

As an initial evaluation of the dissipation schemes for viscous 
ows we consider low-speed
(M1 = 0:15) 
ow over a 
at plate at zero incidence. For this 
ow the Reynolds number per
unit length is 105. The computational domain is a rectangle. With respect to the leading
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edge of the plate, the domain extends two plate lengths upstream and one plate length
downstream. The upper boundary is four plate lengths above the plate. Solutions were
computed on the same domain and grids used in [28]. Starting with the �nest mesh, coarser
meshes were determined by successively eliminating every other mesh line. The �nest grid
consists of 512� 128 cells, with 384 cells on the plate. In the direction y normal to the plate
the grid is spaced uniformly in the boundary-layer coordinate � (� = y=Re1=2x ), where x is the
coordinate parallel to the surface, and Rex is the Reynolds number based on distance from
the leading edge of the plate). Thus, there is constant resolution of the boundary layer at
each location along the plate. Outside the boundary layer the grid is stretched exponentially.
In order to resolve the region in the vicinity of the stagnation point, the grid is clustered
at the leading edge of the plate. At the surface of the plate no-slip and adiabatic boundary
conditions are enforced. Along the boundary upstream of the leading edge, a symmetry
condition is applied. Characteristic type boundary conditions are used at the upstream,
downstream, and upper boundaries.

A comparison of the velocity pro�le at X=L = 0:82 computed with the scalar, matrix,
and HCUSP dissipation forms is displayed in Figure 4. Even with just eight points in the
boundary layer (64 � 16 grid) the MATD and HCUSP schemes nearly replicate the Blasius
solution. As demonstrated in [1] scalar dissipation can produce serious contamination. With
the scalar dissipation, more than 32 points are required in the boundary layer to obtain a
grid converged solution. For the MATD and HCUSP schemes the variation of the errors
(relative to the Blasius solution) in the calculated skin friction, displacement thickness, and
momentum thickness are shown in Figures 5a and 5b. The standard de�nitions given in [20]
are used for these boundary-layer quantities. The errors in all the boundary-layer parameters
are quite similar for the high-resolution schemes. This is not surprising since both schemes
have a scaling factor that vanishes as the surface is approached.

Transonic 
ow over the RAE 2822 airfoil is the next test case. The free-stream Mach
number is 0.73, the angle of attack is 2:79�, and the Reynolds number based on the airfoil
chord is 6:5� 106. Transition of the 
ow from laminar to turbulent is �xed at the 3% chord
location. The C-type grids used in the computations are as follows: (1) 160 � 32 with 128
cells on the airfoil, (2) 320 � 64 with 256 cells on the airfoil, and (3) 640 � 128 with 512
cells on the airfoil. In order to determine the e�ect of further mesh re�nement a calculation
was performed with the MATD scheme on a 1280 � 256 grid. As in the 
at-plate case,
each successively coarser grid was generated by eliminating every other mesh line in both
coordinate directions of the �ner mesh. The outer boundary is located 20 chords from the
airfoil. The normal spacing at the surface of the 640�128 mesh is 7:5�10�6 chords. At the
leading and trailing edges of the airfoil the mesh is clustered, giving tangential spacings of
1:17 � 10�3 and 1:86 � 10�3 chords, respectively. These critical mesh-de�ning spacings are
roughly doubled with each mesh coarsening.

In Figure 6 the pressure (Cp) and surface skin-friction (Cf) distributions computed with
the di�erent dissipation schemes for the 160� 32 mesh described are shown, along with the
experimental data of [2]. As in the inviscid cases the primary di�erences in the solutions occur
at the shock wave. Both the scalar dissipation (SCALAR) and HCUSP schemes produce
a solution with the shock too far upstream. This is an unexpected result for the HCUSP
scheme. The acceleration of the 
ow upstream of the shock is underpredicted relative to the
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4a: Tangential and transverse velocity pro�les, X/L = 0.82, 64� 16 grid.
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Figure 4: Boundary-layer pro�les on 
at plate with M = 0:15 and Re = 105.
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Figure 5a: Comparison of results with the MATD scheme and Blasius solution (M = 0:15
and Re = 105).
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Figure 5b: Comparison of results with the HCUSP scheme and Blasius solution (M = 0:15
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23



0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

X/C

C
p

160 x 32 grid

SCALAR
MATD

Experiment

HCUSP

Figure 6a: Comparison of pressure distributions with SCALAR, MATD, and HCUSP

schemes on 160 � 32 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5 � 106).
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schemes on 160 � 32 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5 � 106).

24



0.8

0.2

RAE 2822 airfoil
grid 160x32

0.8

0.2

0.8

0.2

0

0

(a) (b)

Figure 7: Contours of function R(u; v) in limiter used with HCUSP scheme; (a) basic limiter
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�nest grid. In [24] the adverse e�ect of a smooth limiter on the accuracy of the solution in
the vicinity of 
ow transition, and thus on the acceleration of the 
ow upstream of the shock,
is demonstrated. Therefore, such a result with the HCUSP scheme could be a consequence
of the smooth limiter being used. Thus, we examined the behavior of the limiter in the 
ow
�eld.

The action of the limiter is revealed by the contour plot of Figure 7 for the minimumof the
limiter function R(u; v) (see (3.2)) taken over all four 
ow variables. The contours indicate
that the basic limiter produces a �rst-order scheme over signi�cant portions of the 
ow
�eld. This result suggests that the inaccuracy on the coarse grid with the HCUSP scheme
is not simply a consequence of the behavior of the limiter in the transition region. Figure
7 also shows contours of the modi�ed function R(u; v) which uses both the contravariant
Mach number and the pressure switch of (2.13). With this function the low-order scheme
occurs only at shock waves. Coarse grid results obtained with the basic and modi�ed limiter
functions are displayed in Figure 8. The shock locations computed with the modi�edHCUSP
scheme and the MATD scheme are nearly the same.

In Figures 9 and 10 the solutions computed on the �ner grids with the modi�ed HCUSP
scheme are compared with the other dissipation schemes. The pressure and skin-friction
distributions obtained with theMATD and modi�ed HCUSP schemes exhibit little di�erence
on each mesh. The SCALAR scheme begins to show fairly close agreement with those from
the other schemes only on the 640 � 128 grid. With both the SCALAR and the MATD
schemes a nonphysical increase in the skin-friction solution on the upper surface appears
at the trailing edge of the airfoil. This nonphysical increase is caused primarily by the
aspect-ratio function of (2.11). As evident in Figure 11, this behavior does not occur in
the solution obtained with the HCUSP scheme. The computed aerodynamic coe�cients,
including the pressure and friction contributions to the total drag, are given in Table II.
On each mesh the lift and drag coe�cients corresponding to the solution obtained with the
MATD scheme exhibit the closest agreement with the 1280�256 grid values. There are only
small discrepancies in the coe�cients associated with the MATD and the modi�ed HCUSP
schemes on the 320 � 64 grid (see also Figure 12).

Convergence behavior for theHCUSP andMATD schemes is similar. For each scheme �ve
levels of multigrid were used and either 50 or 100 cycles were executed on two coarser meshes
in order to obtain an initial solution. On the 320 � 64 grid the average rate of reduction
of the residual with both schemes is about 0.92 for 100 cycles on the �nest mesh. Figure
13 shows the e�ect of modifying the limiter according to (3.8) and (3.2) on the convergence
with the HCUSP scheme. It also indicates the e�ect of the modi�cation given by (2.24) to
�c in the HCUSP scheme. The convergence is improved by using the 2-D formulation for the
dissipation coe�cient �c. Convergence stall can occur with the original limiter. With the
modi�ed limiter and the pressure switch this stall is prevented. Note that convergence with
� = 0 was possible for this transonic case but not for the hypersonic case presented below.

The fourth case is the hypersonic 2-D 
ow over a blunt wedge. Figure 14 displays the
second-order accurate solutions obtained for viscous and inviscid 
ow by using identical
meshes of 64 � 48 cells. Physical di�usion is so large that the shock pro�le is signi�cantly
smeared in the viscous result. For inviscid 
ow, on the other hand, we obtain perfect
capturing with a single interior point in the shock structure by using the formulation of
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Figure 8a: E�ect of modi�cations (pressure switch and reduced background dissipation)
in HCUSP scheme on pressure (160 � 32 grid, RAE 2822 airfoil, M = 0:73, � = 2:79�,
Re = 6:5� 106).
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Figure 8b: E�ect of modi�cations (pressure switch and reduced background dissipation) in
HCUSP scheme on skin friction (160 � 32 grid, RAE 2822 airfoil, M = 0:73, � = 2:79�,
Re = 6:5� 106).
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Figure 9a: Comparison of pressure distributions with SCALAR, MATD, and HCUSP

schemes on 320 � 64 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5 � 106).
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Figure 9b: Comparison of skin-friction distributions with SCALAR, MATD, and HCUSP

schemes on 320 � 64 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5 � 106).

28



0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

X/C

C
p

640 x 128 grid

Experiment
SCALAR
MATD
HCUSP

Figure 10a: Comparison of pressure distributions with SCALAR, MATD, and HCUSP

schemes on 640 � 128 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5� 106).
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Figure 10b: Comparison of skin-friction distributions with SCALAR, MATD, and HCUSP
schemes on 640 � 128 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5� 106).
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Figure 11: Behavior of skin-friction at airfoil trailing edge with SCALAR, MATD, and
HCUSP schemes on 320� 64 grid (RAE 2822 airfoil, M = 0:73, � = 2:79�, Re = 6:5� 106).

Dissipation Grid CL CD CDp CDf

Scheme

SCALAR 160 � 32 0.8172 0.01728 0.01275 0.004532

320 � 64 0.8331 0.01743 0.01194 0.005487

640 � 128 0.8532 0.01782 0.01225 0.005574

MATD 160 � 32 0.8304 0.01818 0.01251 0.005662

320 � 64 0.8538 0.01808 0.01250 0.005571

640 � 128 0.8597 0.01799 0.01246 0.005535

1280 � 256 0.8611 0.01800 0.01246 0.005544

HCUSP 160 � 32 0.7987 0.01926 0.01367 0.005594

320 � 64 0.8493 0.01831 0.01263 0.005679

640 � 128 0.8592 0.01803 0.01245 0.005585

HCUSP 160 � 32 0.8271 0.01760 0.01190 0.005701

(modi�ed) 320 � 64 0.8565 0.01801 0.01234 0.005673

640 � 128 0.8604 0.01798 0.01240 0.005581

Table II: Lift and drag coe�cients for turbulent 
ow over RAE 2822 airfoil (M1 = 0:73;
� = 2:79�; Rec = 6:5 � 106).
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Figure 12a: Variation of lift coe�cient with reciprocal of number of points (RAE 2822 airfoil,
M = 0:73, � = 2:79�, Re = 6:5 � 106).
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Figure 13. E�ect of limiter and modi�ed �c on convergence history of HCUSP scheme (RAE
2822 airfoil, M1 = 0:73, � = 2:79�, Rec = 6:5� 106).
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ow over 2-D wedge (second-order result).
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(2.23) and (2.24). Detailed comparisons of the hypersonic wedge 
ow solutions yielded by
the CUSP scheme and AUSM have been presented in [16]. It was found that the shock
capturing capabilities of both schemes are essentially equal. A comparison of shock pro�les
for the exact and the simpli�ed coe�cients is given in Figure 15. Here, we have chosen
the �rst-order scheme in order to address the pure shock capturing capability of the CUSP
scheme without interference from the limiter. The simpli�ed dissipation coe�cients of (2.26)
produce strong oscillations at the shock, even though there is substantial physical di�usion
present. Hence, it is concluded that an accurate implementation of dissipation coe�cients
is a requirement for hypersonic 
ows with strong shocks.

Some applications of the MATD scheme to hypersonic 
ow problems are given in [23].
However, we �nd that matrix dissipation combined with a pressure-based sensor in order to
switch from second to fourth di�erences has not yet resulted in su�cient robustness to deal
with hypersonic 
ow phenomena in general. In particular, it seems that the user de�ned
coe�cients in (2.13) - (2.15) need adjustment depending on the 
ow problem. Moreover, it is
well known that matrix dissipation schemes su�er from an instability known as the carbuncle
problem [15], and they need rather large values of Vn and Vl in order to restore stability.

The �nal set of results show the behavior of the HCUSP scheme with preconditioning.
Inviscid solutions for 
ow over a NACA 0012 airfoil were computed on a C-type grid with
224 � 40 cells and clustering at the leading and trailing edges. In Figure 16 Mach number
contours delineate the e�ect of the free-stream Mach number on the solutions obtained with
the preconditioned HCUSP scheme. Figure 17 clearly illustrates the bene�ts of precondi-
tioning on the HCUSP scheme. There is a substantial improvement in not only the quality
of the solution but also the convergence behavior with the scheme.

Comparisons of computation times indicate that the HCUSP scheme needs about 25%
more computer time than the basic scalar dissipation of Section 2.1. TheMATD scheme only
requires about 15% additional time. This reduction is primarily a consequence of the single
evaluation of the limiter function. Due to lower inherent dissipation, computations with the
HCUSP formulation converge somewhat slower for transonic 
ows than those with simple
scalar dissipation. The major advantage of the HCUSP approach is that it is more accurate
and more robust than scalar viscosity. Our numerical tests indicate that the accuracy of
the CUSP scheme is close that of matrix dissipation for transonic 
ows provided the �rst-
order scheme is activated at shock waves only. For hypersonic 
ows it seems to be more
robust than the matrix viscosity even though it is not positive. Since the HCUSP scheme
is implemented through arti�cial dissipative terms, it does not have to be applied at each
stage of the Runge-Kutta method. In particular, the di�usive 
uxes can be evaluated only
at the �rst, third, and �fth stages of a �ve-stage method, as is typically done for the scalar
dissipation.
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Figure 15: In
uence of HCUSP dissipation coe�cients on hypersonic 
ow over 2-D wedge.
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Figure 16: In
uence of free-stream Mach number on the inviscid 
ow around NACA 0012
airfoil with the preconditioned HCUSP scheme.

36



grid 224x40grid 224x40

∆cp=0.05

M∞=0.05, α=0°

preconditioned

grid 224x40

M∞=0.05, α=0°

no preconditioning
∆cp=0.05

0 100 200 300 400 500
-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

lo
g(

re
s)

multigrid cycles

HCUSP precond.
α=0, δ=0

HCUSP no precond.

Figure 17: In
uence of preconditioning on the HCUSP scheme.
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8 Concluding Remarks

The CUSP scheme has been studied and analyzed. A detail comparison has been made
between the CUSP, MATD, and scalar dissipation schemes. For transonic inviscid 
ows
the CUSP scheme allows better resolution of shock waves, since they are captured with one
interior point. However, the aerodynamic quantities such as lift and drag obtained with the
original CUSP scheme are not as accurate on coarser meshes (i.e., 320 � 64 cells or less)
as those calculated with the MATD scheme. Both the CUSP and MATD formulations can
give high accuracy in the computation of viscous 
ows. In the case of high Re number 
ow
over a 
at plate, each of these schemes required only eight points in the boundary layer to
have errors in computed skin-friction, displacement thickness, and momentum thickness that
do not exceed 3%. Four times as many points is necessary to obtain comparable accuracy
with the scalar scheme. For transonic viscous 
ows and coarser meshes the accuracy in
aerodynamic coe�cients is somewhat better with the MATD scheme than with the original
CUSP scheme. This loss in accuracy with the CUSP scheme on coarser grids appears to be
a consequence of the limiter producing a �rst-order scheme over signi�cant portions of the

ow �eld and higher levels of background dissipation.

Modi�cations to the CUSP scheme for improving the coarse-grid accuracy have been
presented. These changes restrict the activation regions of the �rst-order scheme to the
neighborhoods of shock waves according to (3.2) and reduce background dissipation using
the limiter of (3.8). They allow the CUSP scheme to give comparable accuracy to that
obtained with the MATD scheme on coarse meshes. With these modi�cations to the CUSP
scheme, convergence stall has been removed. Convergence has been further improved by
introducing the aspect-ratio scaling factor of (2.24).

In comparison to the scalar scheme the CUSP scheme requires roughly 25% more com-
puter time while the MATD scheme needs about 15% more time. In general, convergence
behavior with the CUSP and MATD schemes is similar.

With our present choice of HCUSP dissipation coe�cients it has been shown that the
resolution of strong shock waves occurring in hypersonic 
ows is possible whereas the sim-
pli�ed coe�cients that were published previously failed. At this point the HCUSP scheme
appears to be a better choice than the present MATD scheme for hypersonic 
ow problems.
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